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ABSTRACT: A new strategy is presented for the design of screening experiments in synthetic chemistry when the objective is to
identify the important experimental variables from a limited number of experimental runs. The methodology is based on Taylor
expansion (response surface) models The experimental design is constructed in such a way that the vector of the variables in the
Taylor model in each run are near-orthogonal to each other. This is achieved by laying out a grid of possible experiments in the
experimental space, expanding this candidate experimental design matrix to the corresponding model matrix, i.e. the matrix
containing columns for all variables in the Taylor expansion. This model matrix is then factorised by singular value
decomposition, SVD. The row in the model matrix that is most parallel to the first singular vectors is selected as the first
experiment. .The variation displaced by this first experiment is removed from the elements of the model matrix by projections.
The resulting matrix is the orthogonal complement to the first selected row. The procedure is repeated until all dimensions of the
model space have been spanned by the selected experiments The singular vectors are mutually orthogonal, and selected
experiments will be nearly orthogonal and span the dimensions of the model space. The experiments can be run in sequence and
thus allow for a systematic search, one experiment at a time. It is shown that subset selections from such designs in combination
with PLS modelling can be used to identify the important variables. The principles are illustrated with two examples: (a) a
dibromination of an acetyl with four experimental variables and (b) a synthesis of an enamine by condensing a ketone and
morpholine in the presence of molecular sieves in which seven experimental variables are involved. In the acetal bromination, it
was found that 5 experiments out of 12 were sufficient for identifying the most important variables. In the enamine example, 8
experiments out of 30 were sufficient.

■ INTRODUCTION

When an experimental procedure is to be developed into a
reliable method, an early and important step is to identify the
critical experimental factors as well as their possible interaction
effects. To this end, a variety of different statistical experimental
designs are available: Factorial and fractional factorial designs,1

D-Optimal designs,2 Plackett−Burman designs.3 The use of
such designs in organic synthesis is thoroughly described in ref
4.
There are, however, situations in which severe time-

constraints preclude any attempt to run a screening design
with many experimental runs. Two examples are: (1) A new
compound turned out to have interesting pharmaceutical
properties. For more testing, 200 g of the compound is needed
within 4 weeks. The testing is expensive, and no delay can be
tolerated. The chemists have to produce the necessary quantity
within the time limits. (2) Outsourcing is now very common to
produce the active ingredients in drugs. A chemical company is
contracted by the customer to run some test experiments of a
given procedure and to deliver 200 g of the desired compound.
The time limits are strict, and it is not possible to run more
than a handful of tests. Common to these problems is that the
chemist should run a reaction that is known and has already
been used to make small quantities of the desired compound. It
can therefore be assumed that a useful experimental domain is

known (i.e., the possible ranges of variation of the experimental
factors). It can also be assumed that improved results can be
obtained in the vicinity of the known experimental conditions.
Under these circumstances it is reasonable to assume that the

observed response, y, can be modelled by a truncated Taylor
expansion in the scaled experimental variables, xi, centred
around the known experimental conditions and that

β β β= + Σ + ΣΣ +y x x x ei i ij i jo

in which β0 is the intercept of the response model at the centre
point of the experimental domain, and βi and βij are the values
of the partial derivatives along the variable axes at the centre
point. Least squares estimates (b0, bi, and bij) of the Taylor
coefficients can be obtained by fitting the polynomial to the
experimental results obtained by a proper design.
We have previously shown in this journal5 that response

surface models can be established from designs constructed in
such a way that the rows in the model matrix are nearly
orthogonal. The construction of such designs is described in ref
5, and we will not repeat these details here. The essence of
these designs is that each new experiment selected for the
design spans a new dimension of the model space, i.e. the space
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spanned by the variables in the Taylor polynomial, and that it is
possible to investigate the roles played by the variables and
their interactions by a sequential approach in which the
experiments are added one by one until the variations in the
model space have been mapped.
In a screening, the task is to determine which experimental

variables have a real influence on the result. It is often the case
that out of many variables initially considered to be potentially
important, there are only a few of them that really matter. A
discussion of this is given in ref 6.
It came to our minds that a design based on near-orthogonal

experiments might be useful in a screening situation. The
reasons are the following: The very first experiment in such a
design describes the direction showing the largest variation of
the variable settings in the model space. The important
variables will exert their influence in this experiment. The
second experiment is near-orthogonal to the first one, and the
important variables will influence this experiment too, but in a
dif ferent way. If there are only a handful of important variables,
it might be possible that these can be identified from a handful
of experimental runs. In this report, we show two examples
along these principles.

■ EXAMPLES
The first example is the bromination of an acetal fully described
in ref 5. The reaction is portrayed in Scheme 1. The variables
explored and the design are given in Tables 1 and 2,
respectively.

The second example is the synthesis of an enamine by a
condensation between 4-methyl-2-pentanone and morpholine
in the presence of molecular sieves, see Scheme 2.
The variables explored and their settings are shown in Table

3. The experimental design and the yields obtained are shown
in Table 4. There are three discrete variables at two levels and
four variables at five levels. The candidate experiments were
defined by the full 23 ∗ 54 full factorial design with a total of
5000 runs. The design was expanded to the candidate model
matrix by appending columns of the cross-product terms. The
design was generated by an algorithm based on singular value
decomposition7 as described in ref 5.
Data. It was assumed that second-order interaction models

would be sufficient for describing the variation in yield, y, as
functions of the experimental settings, xi and the interactions, xi
xj:

β β β= + Σ + ΣΣ + ≠y x x x e i j( )i i ij i j0

where e is a random error term.
In the bromination example there are four variables and 11

unknown parameters in the model. In the enamine synthesis,
there are seven variables and 29 unknown parameters in the
model. For these reasons, the model spaces will have 11 and 29
dimensions, respectively and the corresponding designs for
fitting the full Taylor polynomial by least-squares multiple
regression must have at least 11 and 29 experimental runs,
respectively.

Data Analysis. We wished to know whether or not a
limited number of experimental runs would be sufficient for
identifying the important variables. Hence, the number of
experiments will be less than the number of coefficients in the
model and it will not be possible to estimate the coefficients by
least-squares multiple regression. Instead, we have used PLS-
modelling to estimate the coefficients. The PLS models can be
rotated to give estimates of the Taylor model coefficients.
Thorough treatments of PLS modelling are given in refs 8, 9.

Scheme 1

Table 1. Experimental variables in the bromination of the
acetal and the levels of their settingsa

levels of the settings

variables −1 0 +1

x1: reaction temperature/ °C 0 15 30
x2: concentration of acetal/M 0.2 0.3 0.4
x3: stirring rate/rpm 250 325 400
x4: rate of bromine addition/meq min−1 20 50 70

aReproduced with permission from the American Chemical Society.

Table 2. Experimental design and yields obtained in the
bromination of the acetala

design yield

exp # x1 x2 x3 x4 y

1 1.0 1.0 1.0 1.0 87.4
2 1.0 −1.0 −1.0 −1.0 95,8
3 −1.0 1.0 −1.0 1.0 79.5
4 −1.0 −1.0 1.0 −1.0 63.7
5 −1.0 −1.0 0.2 1.0 53.9
6 −1.0 1.0 1.0 −1.0 68.7
7 1.0 1.0 1.0 −1.0 58.8
8 1.0 −1.0 1.0 −1.0 93.5
9 1.0 −1.0 −1.0 1.0 94.0
10 −1.0 −1.0 −1.0 −1.0 77.1
11 1.0 −1.0 1.0 1.0 80.9
12 0 0 0 0 88.6

aReproduced with permission from the American Chemical Society.

Scheme 2

Table 3. Experimental variables and their settings in the
enamine synthesis

settings

variables −1 −0.5 0 0.5 1

x1: type of acid Nafion TFA
x2: temperature/°C 0 10 20 30 40
x3: type of molecular sieve 5A powder pellets
x4: stirring/rpm none 300
x5: ratio morpholine/ketone/
mol/mol

1.0 1.5 2.0 2.5 3.0

x6: ratio molecular sieves/
ketone/g/mol

200 300 400 500 600

x7: molar concentration of
ketonea

2.5 2.9 3.3 4.0 5.0

aActually, the amount of solvent was varied, and the concentrations
given are calculated from this.
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It is not possible, however, to obtain accurate estimates when
the number of experiments is lower than the number of
parameters to be estimated; the estimates will be biased. The
constant in the model will be the average response in the
experimental runs and corresponds to the result obtained in the
average point. If the average response is different from the
constant in the Taylor polynomial and the difference is d = β0 −
yaverage, we have to adjust for this bias prior to fitting the model,
and the expectation of the estimated parameter vector, E[b],
will be

β= + −E b X X X d[ ] ( )T 1 T

in which d is the bias vector obtained from the bias increment
added to each observed response.
The objective of the present investigation is to evaluate if a

limited number of experiments can be used to identify the
important variables. In this context, even a biased estimate will
be indicative.

■ RESULTS
The results of the PLS modelling are summarised in Table 5.
Bromination of the Acetal. We have analysed the roles

played by the variables in two ways: (1) by the cumulative
normal probability distribution plots of their coefficients10 and
(2) by the variable influence plots.8a Figure 1 shows the
cumulative normal probability plots obtained when five, six, and
all experiments, respectively, were used to establish the PLS

model. Figure 2 shows the corresponding variable influence
plots. It is clearly seen that one variable, x1, is visible as an
important variable in all plots. This indicates that the reaction
temperature is an important variable to control. When 5 and 6
experiments in the design, two interaction effects are indicated

Table 4. Experimental design and the yields obtained in the
enamine synthesis

variables yield

exp. no. x1 x2 x3 x4 x5 x6 x7 y

1 −1 −1 −1 −1 −1 −1 1 0.4
2 1 1 1 1 1 1 1 44.2
3 −1 −1 −1 −1 1 1 1 0.9
4 −1 −1 −1 1 −1 1 1 1.7
5 1 1 1 −1 1 1 −1 51.9
6 1 0.5 1 −1 −1 −1 −1 27.0
7 1 1 1 1 −1 1 −1 30.9
8 1 1 1 −1 −1 1 1 26.3
9 −1 −1 −1 −1 1 −1 −1 0.2
10 −1 −1 −1 1 −1 −1 −1 0.2
11 −1 1 1 1 −1 −1 1 22.7
12 1 −1 −1 1 −1 −1 −1 5.2
13 −1 −1 −1 1 1 −1 1 0.8
14 −1 −1 1 −1 −1 1 −1 25.6
15 1 −1 −1 1 −1 −1 1 4.5
16 1 −1 −1 1 −1 −1 1 4.5
17 −1 1 −1 −1 −1 1 −1 4.8
18 1 −1 −1 −1 −1 1 −1 4.5
19 1 −1 −1 −1 1 −1 1 6.2
20 1 1 −1 1 1 −1 −1 27.4
21 −1 1 −1 1 −1 1 1 11.1
22 1 −1 −1 1 1 1 −1 5.6
23 −1 1 −1 1 1 1 −1 13.3
24 −1 1 1 −1 1 −1 −1 25.2
25 −1 −1 1 1 −1 −1 1 11.5
26 −1 1 1 −1 1 −1 −1 25.2
27 1 1 −1 −1 −1 −1 1 17.0
28 1 −1 1 1 1 1 1 25.4
29 −1 1 1 1 1 1 −1 43.6
30 −1 −1 −1 −1 −1 1 −1 0.4

Table 5. Summary of PLS resultsa

reaction system experiments PLS components R2 Q2

acetal 5 2 1.00 0.726
6 l 0.898 0.382
12 1 0.808 0.269

enamine 8 2 0.894 0.572
10 1 0.933 0.449
16 1 0.841 0.545
20 1 0.858 0.565
30 1 0.890 0.560

aThe fitted model was the second-order interaction model.

Figure 1. Acetal bromination: cumulative normal probability plots of
estimated coefficients from: (a) 5 experiments; (b) 6 experiments; (c)
12 experiments.
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as possibly important: between x2 (the acetal concentration and
x3 (the stirring rate) and between x3, (the rate of bromine
addition) The reaction is exothermic, and this may explain
these interaction effects. When all experiments were included in
the design, only x1 and the interaction x3,x4 appear to be
important. The other variables have only a minor importance.
This was also the conclusion reached in ref 5.
Enamine Synthesis. This is a more complicated system.

Figure 3 shows the cumulative normal probability distributions
of the estimated coefficients obtained when 8, 10, 16, 20, and
all experiments, respectively, were used to establish the PLS
model. Figure 4 shows the corresponding variable influence
plots. The experiments are more easily evaluated from the
variable influence plots than from the cumulative normal
probability distributions.
With all designs, three variables are indicated as highly

important: x1 (the type of acid catalyst), x2 (the reaction
temperature), and x3 (the type of molecular sieve). Two more
variables: x6 (the ratio molecular sieves/ketone), and x7 (the
molar concentration of the ketone) are indicated as possibly
important. Some interaction effects of minor importance are
also seen.

When the first eight experiments were used, the cross-
product x1x3 is constant, and the corresponding interaction
coefficient is confounded with the average, β0.
A screening experiment is carried out to identify which of

many possible variables are likely to have a significant influence
on the result. These variables should then be more carefully
studied in subsequent experiments. If some variables found to
be significant in the first screening should turn out to have only
minor influences in the follow-up experiments, no harm is
done, and these variables can then be safely removed from
further consideration. It is much worse if important variables
are overlooked.
The coefficients estimated with PLS are biased, see above.

However, even a biased estimate contains information. The
objective is not to estimate a response surface model with high
precision but to discern which variables are likely to be
important, and for this porpose, the PLS estimates will be
sufficient.

■ DISCUSSION
One reviewer checked our models with the MODDE 8.0
software,11 and the results obtained were different from ours.
We have used the SIMCA 12.0 software12 to establish our
models (with cross-validation to avoid overfitting). The models
established by the MODDE software included more PLS
components than our models, and it was suggested that the
difference in results were due to underfitting of our models. We
have checked this and refitted our models including as many
components as suggested by MODDE. However, the differ-
ences remained. We also tried OPLS13 for fitting the models.
By this procedure, the variation in the model matrix, X, that is
uncorrelated to the response is removed prior to fitting the
model. The results were similar to what had been obtained with
regular PLS. There is another explanation as to why our results
using SIMCA differ from the models obtained by MODDE: the
algorithms operate differently. In MODDE the variables are
orthogonally scaled (−1 for the low level, +1 for the high level)
prior to fitting the PLS model, while i SIMCA the variables are
autoscaled to unit variance over the set of experiments prior to
fitting the PLS model. This may explain the differences in the
result pointed out by one of the reviewers.
The cumulative normal probability plot and the variable

influence plots were all similar, but not identical, using PLS
with cross-validation, PLS with more components, and OPLS,
respectively, and yielded the same conclusions. For simplicity,
the plots shown in this report were obtained from PLS with
cross-validation.
It is evident that the amount of information on the

experimental variables is limited when only a few experiments
have been run and the estimates of the Taylor polynomial
coefficient will be biased by confounding with other effects. It
was suggested by one reviewer that, in the first place, a design
for fitting a model with only first-order terms should be run.
We agree, this is good advice. It is then possible to augment the
design for fitting a second-order interaction model and remove
the experiments already done. The designs for fitting a first-
order linear model are embedded in the designs for fitting the
second-order interaction models (see the design matrices given
in the Appendix in ref 5. It is therefore possible first to run the
experiments for a linear model and then run the remaining
experiment to fit an interaction model.
Since the experiments are near-orthogonal, they span the

different dimensions in the model space, and running all the

Figure 2. Variable influence plots from (a) 5 experiments; (b) 6
experiments; (c) 12 experiments. A variable influence >1.0 indicates a
significant contribution to the model.
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experiment in the designs will deconfound the estimated Taylor
coefficients.

■ CONCLUSIONS
If the objective is to fit a response model with high precision,
then of course it is necessary to use a statistical design that
permits accurate estimations of the model parameters.
However, such designs often contain a fairly large number of
individual experimental runs, and sometimes this precludes
their use. Under such circumstances, we have suggested that a
design based on near-orthogonal experiments can be useful,
and in this contribution we have shown that sets of such
experiment make it possible to discern the important
experimental variables from only a few runs. As the experiments
are run sequentially, one by one, it is possible to run the
number of experiments necessary to obtain a clear picture. We
assume that this will be an appealing technique in the realm of
process chemistry.

■ EXPERIMENTAL SECTION
Computations. The experimental designs were generated

in MATLAB.14 The PLS models were obtained with cross
validation using the SIMCA P-12 software.12

Chemicals. Morpholine (puriss.) was obtained from Fluka.
4-Methyl-2-pentanone (HPLC grade), cyclohexane (99.5%),

and phenylcyclohexane (puriss.) internal standard for GC were
obtained from Aldrich. They were used as delivered. Molecular
sieves, 5Å powder and pellets were obtained from Fluka. They
were activated at 300 °C for 24 h prior to use and stored in a
desiccator over phosphorus pentoxide. A reference sample of
the morpholine enamine from 4-methyl-2-pentanone used for
GC-calibration was prepared according to ref 15.

GC Analyses. Enamine Synthesis. A Varian 3400 gas
chromatograph with a flame ionisation detector coupled to a
Varian 4400 integrator was used. The column was SPB-5, 30 m,
0.35 mm i.d., operated with the following temperature
program: 70 °C, 5 min; 10 °C min−1; 180 °C. The yields
were determined from the integrated peak areas using
phenylcyclohexane as internal standard.

General Procedure for the Screening Experiments,
Bromoacetal Synthesis. The experimental procedure for the
bromination of the acetal is given in ref 5, and it is not
reproduced here.

General Procedure for the Screening Experiments,
Enamine Synthesis. The settings of the variables are shown
in Table 3. The experiments were run in 50 mL test tubes using
a heating block reactor system, Bohdane 2080 miniblock from
Mettler Toledo. In the experiments, 5 mmol of the ketone, 4-
methyl-2-pentanone, was used. The test tube was charged with
the ketone, the amount x6 of the molecular sieves of type x3, the

Figure 3. Enamine synthesis: Cumulative normal probability distribution plots of estimated coefficients from: (a) 8 experiments; (b) 10
experiments; (c) 16 experiments; (d) 20 experiments; (e) 30 experiments.
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amount x5 of morpholine, a carefully weighed amount, ∼200
mg, of phenylcyclohexane (internal standard), and 20 mg of the
acid x1. The calculated amount of cyclohexane solvent to give
the concentation x7 was then added to the test tube The
temperature, x2, and the stirring, x4, were adjusted. The reaction
was monitored by gas chromatography. Samples of 0.1 mL were
withdrawn, filtered through a plug of cotton, diluted with 2 mL
of pentane, and analysed by GC. Integrated peak areas were
used for quantification. The yields obtained after 24 h are
shown in Table 4.
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